Gradient estimates of very weak solutions to general quasilinear elliptic equations
نویسندگان
چکیده
We establish a gradient estimate for very weak solution to quasilinear elliptic equation with nonstandard growth condition, which is natural generalization of the p -Laplace equation. investigate maximum extent hold without imposing any regularity assumption on nonlinearity other than basic structure assumptions. Our results also include higher integrability result and existence solutions such nonlinear problems.
منابع مشابه
Positive Solutions of Quasilinear Elliptic Equations
(1.2) { −∆pu = λa(x)|u|p−2u, u ∈ D 0 (Ω), has the least eigenvalue λ1 > 0 with a positive eigenfunction e1 and λ1 is the only eigenvalue having this property (cf. Proposition 3.1). This gives us a possibility to study the existence of an unbounded branch of positive solutions bifurcating from (λ1, 0). When Ω is bounded, the result is well-known, we refer to the survey article of Amann [2] and t...
متن کاملExistence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملNodal solutions to quasilinear elliptic equations on compact Riemannian manifolds
We show the existence of nodal solutions to perturbed quasilinear elliptic equations with critical Sobolev exponent on compact Riemannian manifolds. A nonexistence result is also given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2022
ISSN: ['0022-1236', '1096-0783']
DOI: https://doi.org/10.1016/j.jfa.2022.109668